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Abstract: Estimating causal effects from randomized experiments is central to clinical research. Reducing
the statistical uncertainty in these analyses is an important objective for statisticians. Registries, prior trials,
and health records constitute a growing compendium of historical data on patients under standard-of-care
that may be exploitable to this end. However, most methods for historical borrowing achieve reductions in
variance by sacrificing strict type-I error rate control. Here, we propose a use of historical data that exploits
linear covariate adjustment to improve the efficiency of trial analyses without incurring bias. Specifically, we
train a prognostic model on the historical data, then estimate the treatment effect using a linear regression
while adjusting for the trial subjects’ predicted outcomes (their prognostic scores). We prove that, under
certain conditions, this prognostic covariate adjustment procedure attains the minimum variance possible
among a large class of estimators. When those conditions are not met, prognostic covariate adjustment is
still more efficient than raw covariate adjustment and the gain in efficiency is proportional to a measure
of the predictive accuracy of the prognostic model above and beyond the linear relationship with the raw
covariates.Wedemonstrate the approachusing simulations anda reanalysis of anAlzheimer’s disease clinical
trial and observemeaningful reductions inmean-squared error and the estimated variance. Lastly, we provide
a simplified formula for asymptotic variance that enables power calculations that account for these gains.
Sample size reductions between 10% and 30% are attainable when using prognostic models that explain a
clinically realistic percentage of the outcome variance.
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1 Introduction
The goal of much clinical research is to estimate the effect of a treatment on an outcome of interest (causal
inference) [1]. The randomized trial is the gold standard for causal inference because randomization cancels
out the effects of any unobserved confounders in expectation [2–4]. Although unobserved confounding is
not a concern in randomized studies, we must still contend with the statistical uncertainty inherent to finite
samples ifwe conduct ourwork in apopulation inference framework. Because of this,methods for the analysis
of trial data should be chosen to safely minimize the resulting statistical uncertainty about the causal effect.

Foragiven treatment effect estimatoranddata-generatingprocess, sample size is theprimarydeterminant
of sampling variance and power. Therefore themost straightforwardmethod to reduce sampling variance is to
runa larger trial that includesmore subjects.However, trial costs and timelines typically scalewith thenumber
of subjects, making large trials economically and logistically challenging. Moreover, ethical considerations
suggest that human subjects research should use the smallest sample sizes possible that allow for reliable
decision making.

As most clinical trials compare an active treatment to a standard-of-care, often in combination with a
placebo, there is a possibility to use existing control arm data1 to augment clinical trials and reduce variance.
Such “historical borrowing” methods are becoming increasing attractive as the creation of large, electronic
patient datasets in the past decade facilitates this process by making it easier to find a suitably matched
historical population. Various approaches ranging from directly inserting subjects from previous studies into
the current sample to using previous studies to derive prior distributions for Bayesian analyses have been
proposed [5–8]. Although such methods do generally increase power, they cannot strictly control the rate of
type I error [5, 8, 9].

Here, we describe an alternative approach that exploits machine learning models and historical control
arm data to decrease the uncertainty in effects estimated from randomized trials without compromising strict
type-I error rate control in the large-sample setting. The gist of our proposal is to use the historical data to
train a prognostic model that predicts a patient’s outcome given their baseline covariates. This prognostic
model is applied to all patients in the current trial in order to generate a prediction of their outcome (their
“prognostic score” [10–12]). The score is then adjusted for as a covariate in a (linear) regression model of
the trial outcome in order to estimate the treatment effect. This amounts to adding a single (constructed)
adjustment covariate into an adjusted analysis. As such, it poses no additional statistical risk2 over any other
pre-specified adjusted analyses, which are preferable to unadjusted analyses in almost every case [13–16].
Our approach is entirely pre-specifiable, is generic enough to be integrated into many analysis plans, and is
supported by regulatory guidance [17]. Moreover, there are no practical restrictions on the type of prognostic
model used, enabling one to leverage machine learning-based methods that can learn nonlinear predictive
models from large databases.

Below, we show that this prognostic covariate adjustment procedure attains the minimum possible
asymptotic variance among “reasonable” estimators as long as the prognostic model improves with more
data and the effect of treatment is constant. The uncertainty in the estimate for the treatment effect is
minimized when the prognostic model predicts the control potential outcome of each subject. However, one
can realize gains in efficiency even with imperfect prognostic models or in the presence of heterogeneous

1 Treatment-arm historical data is usually more difficult to come by, especially if the active treatment under consideration is
experimental and has not been previously tested. However the approach we propose is generic enough to handle relatively
arbitrary historical data. The improvements in efficiency will depend on how similar the historical data-generating process is to
the current one.
2 There is some confusion and subtlety around this point. Freedman [52] is sometimes referenced to claim that covariate
adjustment can incur bias, but in fact, the presence of treatment interaction terms resolves the issue [13]. Moreover, both of these
results apply only to the “randomization inference” setting where the covariates and potential outcomes are considered fixed (i.e.
randomness arises only from treatment assignment, not sampling). We use the more-common population inference framework
in this work, in which these criticisms do not apply [51].
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effects. In general, our procedure decreases the variance of the estimated treatment effect in proportion to
the squared correlation of the prognostic model with the outcome while guaranteeing unbiasedness, control
of type-I error rate, and confidence interval coverage. We demonstrate the efficiency gain in simulations and
through a reanalysis of a previously reported clinical trial studying the effect of docosahexaenoic acid (DHA)
on cognition in patients with Alzheimer’s disease.

Although we are (to our knowledge) the first to formally characterize it, prognostic covariate adjustment
has been used in trials for a long time. The baseline covariates in a trial are often “atomic” measurements
such as sex, age, or lab values, but composite or computed covariates such as body mass index, Charlson
comorbidity index, or Framingham risk score, are also frequently used [14, 15, 18–20]. These “indices” or
“scores” are usually the output of a simplified prognostic model that has been learned (at least implicitly)
from historical data. For instance, the Framingham cardiovascular risk score was developed by training Cox
and logistic regressionmodels using a large community-based cohort to obtain a single covariate that is highly
predictive of cardiovascular outcomes. From that perspective, our proposed approach is a formalization of
what has previously been an ad-hoc procedure.

The novel contributions of this paper are therefore threefold. Firstly, we provide a formal characterization
of prognostic covariate adjustment. Although this process has already been used in trials (if one considers
a baseline outcome measurement or risk score as a rudimentary prognostic score), it has not been formally
described as a method for leveraging historical data to improve the efficiency of a proposed trial. Our second
novelty is an asymptotic proof that shows prognostic covariate adjustment is semiparametric efficient if the
effect of treatment is constant, the historical data follow the same distribution as the trial control arm, and
the prognostic model improves with the amount of historical data. Roughly translated, this means that the
power of a trial using prognostic covariate adjustment will be higher or equal to the power of any other trial
design that controls type I error. Thirdly, we provide a method of sample size estimation that allows for the
design of smaller trialswith prognostic covariate adjustment thatmaintain their power. The formulawederive
coincides in certain special cases with previously known results, but to our knowledge our derivation is more
general and rests on fewer assumptions than what is available elsewhere in the literature [21].

2 Setting and notation
Our setting is a two-arm randomized clinical trial. Denote the outcome for subject i in the clinical trial with
Yi, their baseline covariates with Xi, and their treatment assignment with Wi. The trial dataset is a set of n
tuples (Xi,Wi,Yi), which we denote (X,W,Y) ∈ n × {0, 1}n ×ℝn (we use boldface A to denote a vector of
random variables, each associated with one observation in the dataset). Throughout the paper we assume a
continuous outcome. Let Y0 and Y1 be the control and treatment potential outcomes of the subjects in the
trial, respectively, and let YW = WY1 + (1−W)Y0 [22]. Our structural assumption about the trial is,

P(X,W,Y ,Y0,Y1) = 1(Y = YW )P(W)
∏
i
P(Xi,Y0,i,Y1,i). (1)

Inotherwords, (a) theobservedoutcomesare thepotential outcomescorresponding to theassigned treatment,
(b) the treatment is assigned independently of observed or unobserved baseline covariates and independently
of potential outcomes, and (c) our subjects are independent of each other. In addition to being independent,
we also assume the subjects are identically distributed, i.e. (Xi,Y0,i,Y1,i)

IID∼P(X,Y0,Y1).
We denote the population average outcomes under each treatment condition 𝑤 as 𝜇

𝑤

= 𝔼 [Y
𝑤
] and the

conditional means as 𝜇
𝑤

(X) = 𝔼 [Y
𝑤

|X]. In general, a “treatment effect” is any function of these marginal
means, i.e. 𝜏 = r(𝜇0, 𝜇1), but whenwe say treatment effect here we specificallymean the difference inmeans,
𝜏 = 𝜇1 − 𝜇0.

Finally, we denote the treatment indicators asW1,i = Wi andW0,i = 1−Wi to allow for symmetric nota-
tion. Let 𝜋1 = P(W1 = 1) and let 𝜋0 = P(W0 = 1) be the probability that a subject is assigned to the treatment
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or control arm in the trial, respectively. In simple randomized experiments, these are constants that apply to
all subjects.

In what follows, abbreviate the usual empirical (sample) average of IID variables A1… An ∼ A with
the notation ̂𝔼 [A] = 1

n
∑Ai (or ̄A). Denote an empirical conditional average ̂𝔼 [A|B = b] = 1

nb

∑
Bi=bAi with nb

the number of observations where Bi = b. Let ̃A = A− 𝔼 [A] (or ̃A = A− ̂𝔼 [A]) be centered (or empirically
centered) versions of the random variable A, with usage clear from context or otherwise noted. Let 𝕍 [A]
denote the variance of A and ℂ [A,B] denote the covariance between A and B.

When we describe “asymptotic” properties of an estimator in all cases we are referring to the asymptote
where the number of observations n is increasingwhile other properties of the data-generating process remain
fixed. As usual, the “asymptotic varaince” 𝜈2 of an asymptotically normal estimator 𝜏n of a parameter 𝜏 refers
to the variance of the limiting distribution of the sequence

√
n(𝜏n − 𝜏) ⇝ N(0, 𝜈2). We omit the subscript n

where the relevant sequence is clear from context.

3 Prognostic covariate adjustment
At a high level, our approach to historical borrowing (which we call prognostic covariate adjustment) is
to use the historical data to learn a prognostic model, then apply it to the trial to generate an additional
adjustment covariate. Specifically, let be some learning algorithm (e.g. a linear regression, random forest,
deep neural network, etc.) which, when trained on our historical dataset (X′

,Y ′), outputs a “fit” predictive
model,m: →  ′. We assume throughout that the historical and trial data are statistically independent. This
is natural since we already assume that the individual observationswithin each dataset are independent, but
does preclude scenarios where a subject present in the historical data later enters the trial, for example.

The treatment effect estimate we will use is consistent for any choice of prognostic model, so we can
discuss themethod in great generality without assuming the prognostic model takes a specific form or attains
a certain level of predictive performance. That said, it is particularly interesting to consider the “best case
scenario” in which the historical data are representative of the trial control arm, i.e. P(X′

,Y′) = P(X,Y0).
It will be later be shown that the prognostic model that endows our estimator with minimum variance is
the conditional mean, m(X) = 𝔼 [Y0|X], which is the same as m(X′) = 𝔼

[
Y′|X′] in the best case scenario.

Therefore, the construction of the optimal prognostic score involves estimating a function equivalent to
the conditional mean of the outcome given the covariates in the historical sample of controls. As such,
constructing the optimal prognostic model is a standard machine learning problem. In the results that fol-
low, we make no presumption about the particular choice of . We refer to m(⋅) as a prognostic model
and to the quantity Mi = m(Xi) as the prognostic score. Hansen [10] defines the prognostic score as any
quantity f (X) which induces Y0⊥ X|f (X). In the literature, the prognostic score is often treated more infor-
mally as the expected value of the control outcome given the baseline covariates, which motivates our
terminology here.

While it is optimal to construct a prognostic model that accurately approximatesm(X) = 𝔼 [Y0|X], this is
not strictly necessary for using our proposed estimator. Indeed, there may be situations in which this is not
possible in practice. For example, the historical samplemay be too small to reliably learn the relationship, the
distribution of the covariates in the historical population may not reflect the trial population (i.e. a “domain
shift”), or the outcome in the trial may not even have been measured in the historical data (e.g. a biomarker
measured with a new technology). In this latter case, we refer to Y′ as a “surrogate” outcome for Y. Whatever
the reason, the proposed estimator will be unbiased, retain control of the type-I error rate, and decrease
variance (to some degree) even if the prognostic model does not accurately approximate the control potential
outcomes.

In general, we can assume that the prognostic model, m, is given at the time of the trial. To analyze the
trial data, we first use the prognostic model to generate the prognostic score, Mi = m(Xi), for each subject
given their baseline covariates, Xi. Then, we estimate the treatment effect using a linear regression adjusted
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for the empirically centered covariates, prognostic score, and their interactions with the treatment.3 Letting
Z⊤ = [1, ̃W,

̃X⊤

,
̃M⊤

,
̃W ̃X⊤

,
̃W ̃M⊤] be the regressors,4 we fit 𝔼

[
Yi ||Zi] = Z⊤i 𝛽 using ordinary least squares to

obtain the fit coefficients, ̂𝛽. Our estimate of the treatment effect is 𝜏 = ̂
𝛽W , i.e. the coefficient corresponding

to the W term in the regression. This specification is directly based on the “ANCOVA II” estimator analyzed
in Yang and Tsiatis [16]. It is well-known that this is a consistent and asymptotically normal estimator of the
treatment effectwhen treatment is randomized, even if the regression ismisspecified (i.e. the true relationship
is nonlinear)5 [16, 23, 24].

Weestimate samplingvariancewith theusual “Sandwich”estimator ̂𝕍 [𝜏] = (ZZ⊤)−1DDT(ZZ⊤)−1 inwhich
D = Z diag (Y − Z⊤

̂
𝛽). This variance estimator is consistent whether or not the regressions are correctly spec-

ified and is consequently robust against deviations from linearity and homoscedasticity [25]. This guarantees
strict (large-sample)6 type-I error rate control based on p-value cutoffs and valid confidence intervals in prac-
tically all cases (i.e. as long as P(Y0,Y1,X) satisfies mild regularity conditions). In particular, the statistical
validity of the inference is not impacted by the nature of the prognostic score M because it enters into the
analysis like any other covariate.

3.1 Statistical properties

3.1.1 Optimality under constant effects

Although prognostic covariate adjustment provides valid inference (i.e. proper coverage and asymptotic
unbiasedness) under general conditions, we first motivate it by showing that it is in fact optimal under the
assumption of a constant treatment effect and certain assumptions about the prognostic model.

Theorem 1. Presumea constant treatment effect𝜇1(X) = 𝜇0(X)+ 𝜏 . Then the linear prognostic covariate adjust-
ment procedure that uses m(X) = 𝔼 [Y0|X] as the prognostic model has the lowest possible asymptotic variance
among all regular and asymptotically linear estimators with access to the covariates X.

This is restated and proved as Corollary A.6.1 in the Appendix A. Corollary A.6.2 shows the statement also
holdswhen the interaction terms are omitted from theworking regressionmodel. All practical and reasonable
estimators in the context of trial analyses with continuous outcomes are regular and asymptotically linear,7
so this result means linear adjustment for the true control conditional mean is, in some sense, the absolute
“best” possible estimation procedure [26]. Since the prognostic model is trained to approximate 𝔼

[
Y′|X′],

it is best for the historical data to be drawn from the same distribution as the trial control arm so that
𝔼
[
Y′|X′] = 𝔼 [Y0|X].

3 Theorem A.5 in the appendix shows that including interactions is necessary to ensure that the estimator is more efficient than
difference-in-means estimation. The estimated coefficients of these interactions are of no interest to us here—they are merely a
tool to reduce variance in estimation of the main treatment effect. There is a separate and large literature on the estimation of
heterogeneous treatment effects, of which testing for linear treatment-covariate interactions is one small part.
4 If the prognostic score M is identically equal to any of the covariates or is numerically constant, we omit including it in the
regression since in this case it cannot do anything to reduce variance.
5 See footnote .
6 In practice, it may be advisable to employ corrections for this estimator if one is working with a small sample. The estimators
known as HC1, HC2, and HC3 are all reasonable options that make minor changes to the matrix D, e.g. DHC1 =

√
n

n−pD. See Long
and Ervin [53].
7 Regularity and asymptotic linearity are specific technical conditions. Definitions may be found in Tsiatis [26].
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We can in fact weaken our assumption that the prognostic score is perfect (m(X) = 𝔼 [Y0|X]) and still
obtain the same conclusion as long as the prognostic model approaches the truth as the size of the external
dataset increases. The proof of the following is also given in the appendix (Theorem A.8).

Theorem 2. Presume X has compact support and there is a constant treatment effect: 𝜇1(X) = 𝜇0(X)+ 𝜏 with
|𝜇0(x)| < b bounded. Let m(x) be a (random) function learned from the external data (Y ′

,X′)n′ such that
|m(x)| < b is also bounded and |m(X)− 𝜇0(X)| L2

←←←←←←←←←←←←←→0 so that the learned model approaches the truth in mean-
squared error (MSE) as n′ →∞. If the number of trial samples n grows in tandem with the size of the historical
data n′ (i.e. n = O(n′)), then the linear prognostic covariate adjustment estimator that uses the learned model
m(X) in the role of X has the lowest possible asymptotic variance among all regular and asymptotically linear
estimators with access to the covariates X.

This also holds without the use of interaction terms in the regression (Corollary A.8.1). Of course,
m(X) = 𝔼 [Y0|X] will never hold for any given prognostic model, either because the model is not perfectly
learning the relationship or because the training data are not entirely representative of the trial control arm.
Despite this, the theorem means that our statement of optimality is not meaningless because with enough
external data we will come closer and closer to attaining the minimum possible variance. Note that the
condition that |m(X)− 𝜇0(X)| L2

←←←←←←←←←←←←←→0 is relatively weak and justifies the use of a number of machine learning
algorithms to learn the prognostic model [27–30].

3.1.2 Superiority over covariate adjustment without prognostic score

It is not always reasonable to assume a constant effect. However, we can show that even if it is not optimal
among all estimators, prognostic covariate adjustment still retains an advantage over standard covariate
adjustment (Definition A.1). This holds for any fixed prognostic modelm(x).

A note on interaction terms. The following results require the aforementioned interaction terms to be
present in the regressionmodel. If interactions are omitted, the results below only hold if either the treatment
effect is constant or the randomization is 1:1.Without these conditions andwithout interaction terms, there are
cases in which adding the prognostic score (or any covariate) could actually increase the asymptotic variance
(Theorem A.5). These cases may be rare in practice but either way the problem can be entirely avoided simply
by including interactions. Theorem A.5 also shows that these interactions are always useful even without the
prognostic score.

Theorem 3. Assume only mild regularity conditions to ensure that the usual sandwich estimator is consistent.
Consider linearly adjusting (with treatment-covariate interactions) for covariates X with variance𝕍 [X] = Σx and
covariance with Y

𝑤

ofℂ [Y
𝑤

,X] = 𝜉
𝑤,x versus a set of covariates [X,M] (M ∈ ℝ) (again using interactions) with

ℂ [X,M] = 𝜁 , 𝕍 [M] = 𝜎

2
m and ℂ [Y

𝑤

,M] = 𝜉
𝑤,m. Let 𝜉m∗ = 𝜋0𝜉1,m + 𝜋1𝜉0,m and 𝜉x∗ = 𝜋0𝜉1,x + 𝜋1𝜉0,x. Assume

M is not a linear combination of the variables in X. The reduction in asymptotic variance from including the
prognostic score M in the regression is always nonnegative and given by

(
1

𝜋0𝜋1

) (
𝜉m∗ − 𝜉

⊤

x∗Σ
−1
x 𝜁

)2
𝜎
2
m − 𝜁

⊤Σ−1
x 𝜁

(2)

This is restated and proved as Corollary A.4.2 in the Appendix A. The conclusions are that (i) including a
prognostic score as a covariate should never hurt the asymptotic variance and (ii) the efficiency gain depends
on how well correlated the prognostic score is with the outcome (above and beyond any correlation with the
raw covariates). Prognostic models that are better correlated with the outcome thus offer larger efficiency
gains, but the presence of any correlation at all could still decrease the variance. This justifies the use of
prognostic covariate adjustment for surrogate outcomes (i.e. when Y′ and Y represent different but, perhaps
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correlated, outcomes) and in cases with heterogeneous treatment effects. It is worth mentioning that the
prognostic score must be a nonlinear function of the included covariates X for there to be any benefit. In
fact, there would not be a unique solution for the coefficients of the regression if the prognostic score and
covariates were exactly colinear.

3.1.3 Pragmatic sample size calculation

Our primary goal in this paper is to demonstrate how prognostic covariate adjustment decreases the variance
for a fixed trial relative to raw covariate adjustment. However, it is also useful to consider how knowledge
of this efficiency gain could be exploited to conduct smaller trials that attain a desired level of confidence.
Since the asymptotic variance of the estimate determines the power of the trial, smaller trials using prognostic
covariate adjustment may attain equal power to a larger trial using raw covariate adjustment. Power must
be estimated before running the trial in order to gauge the number of subjects to be enrolled. This requires
a formula for sampling variance. Although Theorem 3 gives a precise quantification of the efficiency gained
by including the prognostic score, it may be impractical to calculate this quantity because one would need
to estimate a potentially large number of population parameters (e.g. the entries of Σx). Here we provide
an upper bound on the resulting sampling variance that uses fewer population parameters and is therefore
easier to apply in a prospective setting.

Theorem 4. Assume only mild regularity conditions to ensure that the usual sandwich estimator is consis-
tent. Given an arbitrary, fixed prognostic score M = m(X), the asymptotic variance of our proposed estimation
procedure is no greater than

𝜎

2
0

𝜋0
+ 𝜎

2
1

𝜋1
− 𝜋0𝜋1

(
𝜌1𝜎1
𝜋1

+ 𝜌0𝜎0
𝜋0

)2
(3)

where 𝜎
𝑤

= 𝕍 [Y
𝑤
] and 𝜌

𝑤

is the population correlation betweenM and Y
𝑤

, i.e.ℂ [M,Y
𝑤
]∕

√
𝕍 [M]𝕍 [Y

𝑤
]. This

is always less than the asymptotic variance of the unadjusted estimator (an upper bound on the variance of the
standard covariate-adjusted estimator that uses the same population parameters), which is

𝜎

2
0

𝜋0
+ 𝜎

2
1

𝜋1
(4)

The bound follows directly from 8, 9, and 8.2 in the appendix. This bound does not account for any
reduction in variance due to adjustment for the raw covariates, X. However, if the prognostic model is
accurate, the raw covariates are unlikely to provide substantial efficiency gains because their effects are
already “soaked up” by the prognostic score. In addition, the only population parameters in this bound are
the marginal outcome variances and model-outcome correlations in each treatment arm.

In conjunction with estimates of 𝜎2
𝑤

and 𝜌
𝑤

, this formula may be used to prospectively calculate a lower
bound on the power of a clinical trial analyzed with prognostic covariate adjustment. Asymptotic normality
means that, in the limit, theprobability of a two-sidedp-valuebeing less than𝛼 (i.e. a “statistically significant”
result) is

Φ
(
Φ−1(𝛼∕2)+

√
n𝜏
𝜈

)
+Φ

(
Φ−1(𝛼∕2)−

√
n𝜏
𝜈

)
(5)

where Φ is the CDF of the standard normal, 𝜏 is the true (target) treatment effect and 𝜈

2 is the asymptotic
variance of whatever asymptotically normal estimator is being used. Composing the variance bound for the
prognostic covariate adjustment estimator given in Theorem 4with this formula gives an upper bound for the
power of trial analyzed with that estimator that depends only on the target effect 𝜏, sample sizes n

𝑤

, potential
outcome variances 𝜎2

𝑤

, and potential outcome-prognostic score correlations 𝜌
𝑤

. The target effect is usually
fixed a priori. The latter two quantities may be estimated using historical data and/or expert opinion (see
Appendix B). After fixing them, the sample sizes may be varied in a desired ratio until the desired power (e.g.
80%) is achieved.



8 | A. Schuler et al.: Prognostic covariate adjustment for randomized trials

Because of efficiency gains, the required sample size for a trial powered with this method and analyzed
with prognostic covariate adjustment will be lower than for a trial powered without exploiting covariate
information.We can equate the power for a target effect 𝜏 of an estimator with variance given by Eq. (3) (upper
bound on prognostic covariate adjustment) to one with variance given by 4 (upper bound on raw covariate
adjustment) to algebraically discover the relationship between n, the sample size required for a well-powered
analysis with raw covariate adjustment, and n†, the sample size required for a well-powered analysis with
prognostic covariate adjustment. In the case of a 1:1 randomization ratio (𝜋0 = 𝜋1 = 0.5), this relationship is

n†
n = 1− (𝜎0𝜌0 + 𝜎1𝜌1)2

2
(
𝜎

2
0 + 𝜎

2
1
) (6)

With a common variance 𝜎0 = 𝜎1 = 𝜎 and correlation 𝜌0 = 𝜌1 = 𝜌 this simplifies to n†
n = 1− 𝜌

2, or, in
terms of a percent reduction in sample size from n, n−n†

n = 𝜌

2. This is precisely the out-of-sample R2 of the
prognostic modelm. This relationship holds regardless of the value of the target effect and the desired power.
The result coincides with the formula from Borm et al. [21], although our derivation is more robust because
we do not rely on parametric assumptions. A generic relationship that does not assume 1:1 randomization is
easily derived in the same fashion.

R2 values can vary wildly depending on the model, outcome, and population, but folk wisdom among
biostatisticians has it that values between 0.1 and 0.3might be expected from a good prognosticmodel. Those
values translate to meaningful sample size reductions between 10% and 30%.

Note that the bound in Theorem 4 is actually generic to any covariate becauseM enters the estimator the
same way any other covariate does. In other words, the result still holds if one substitutes any Xj forM in the
theorem. For instance, presume baseline age X0 is known to be correlated with the standard-of-care (control)
outcome at a strength of 𝜌X0 = 0.2. Then in a 1:1 trial (presuming common 𝜎

2 and 𝜌) we could reduce the
sample size by 4% relative to the unadjusted power calculation and still maintain the same design power for
the same target effect, all without the need for a dedicated prognostic model.8

4 Simulations
Unlike analyses of real data, analyses of simulated data can be compared to ground truth to gauge error.
We used simulation to explore how mean-squared estimation error of the treatment effect varies with and
without prognostic covariate adjustment. In particular, we were interested in cases with or without strong
effects, non-linearity in the outcome-covariate relationship, heterogeneity in the treatment effect, surrogate
outcomes, or distributional shifts between the historical and trial data-generating processes. We show that
prognostic covariate adjustment performs better than raw covariate adjustment in all cases where theory
expects it to and performs worse in no cases. The amount of improvement from scenario to scenario is in line
with intuition gained from theory.

We chose our simulation scenarios to demonstrate the different performance benefits of effect estimation
with prognostic covariate adjustment relative to raw covariate adjustment in cases that might come up
in real trials. Effect sizes vary from trial to trial but the overall size of the true treatment effect should
not change the relative efficiency of prognostic and raw covariate adjustment (i.e. because the asymptotic
variances do not depend on the treatment effect) so we chose this scenario to demonstrate the point. Possible
nonlinearities must always be contended with in trial analyses. For our purposes, outcomes that are linearly
related to the covariates should not benefit from prognostic covariate adjustment above and beyond raw
covariate adjustment because all of the information from the raw covariates is exploitable by the linear
model. Heterogeneity of effect is always possible and should decrease the advantage of prognostic covariate

8 A prognostic model will, of course, be expected to approach the maximum possible correlation with the outcome that could be
attained as a function of the baseline covariates. Thus there is usually a benefit to using such a model if one is available.
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adjustment to some extent because the prognostic score is less predictive in the treatment arm. Using a
surrogate outcome should also decrease the advantage of the prognostic score because its predictive capacity
is lessened in both treatment arms of the trial – this case may arise if the trial outcome is not well-measured
in historical data. Lastly, it is always possible that the historical data are not representative of the current trial
population. When this is the case, we expect the benefits of prognostic covariate adjustment to be attenuated
because the model must extrapolate outside of its trained range to perform on the trial population.

Each of our simulation scenarios is defined by particular choices for the pair of distributions P(X′
,Y′)

and P(X,Y0,Y1). In all cases, the distribution of covariates in the simulated historical and trial data were
10-dimensional uniform random variables in the prism [l, h]10. Distributional shift was modeled by choosing
different values of l and h for P(X′) and P(X). The distributions P(Y′|X′), P(Y0|X), and P(Y1|X) were of a
Gaussian quadratic-mean form  (aX⊤𝟙X + bX⊤𝟙+ c, 1) in all scenarios (𝟙 is a matrix or vector of 1s with
appropriate shape implied). The parameter a controls the degree of non-linearity, with a = 0 representing the
linear case. In this context, treatment effect heterogeneity refers to the situation in which a or b is different
for P(Y0|X), and P(Y1|X), whereas surrogate outcome refers to the situation in which a or b is different for
P(Y′|X′) and P(Y0|X). Large constant effects are encoded with different values for c in P(Y0|X), and P(Y1|X)
while keeping a and b the same. The specific values of l, h for each covariate distribution and of a, b, and c
are shown in Table 1.

The “baseline” simulation scenario included some moderate outcome non-linearity, constant treatment
effect, and no distributional shift between the historical data and the trial control arm. We tested four
variations of this scenario. In the first (“linear”) we examined what happened when the outcome-covariate
relationship was precisely linear in both treatment arms. In the second (“heterogeneous effect”) we tested
a variation of the baseline scenario where the conditional average effect 𝔼 [Y1 − Y0|X] was no longer a
constant. In the third (“surrogate outcome”) we tested a variation where the relationship between outcome
and covariates in the historical data was not representative of the corresponding relationship in the control
arm of the trial, i.e. P(Y′|X′ = x) ≠ P(Y0|X0 = x). In the fourth (“covariate shift”) we tested a variation where
the historical population was not representative of the trial population in terms of the baseline covariates,
i.e. P(X′ = x) ≠ P(X = x).

In each simulation scenario, we generated a historical control dataset (X′
,Y ′) by drawing 10,000 IID

samples from a specified distribution, P(X′
,Y′) = P(Y′|X′)P(X′). These simulated historical data were used to

train to a random forest (1000 trees, with other parameters set to defaults in the python package sklearn [31])
as a prognostic model,m: →  . Then, we simulated a randomized trial dataset (X,W ,Y) with 500 subjects,
evenly split between treatment and control. The data-generating process for these data involved drawing
500 IID samples from a counterfactual distribution P(Y1,Y0,X) = P(Y1|X)P(Y0|X)P(X), evenly splitting the
sample into treatment and control arms, and then setting Y = Y1 for the treated and Y = Y0 for the controls.
Finally, we used the prognostic model to generate the prognostic score, M = m(X), and analyzed the data
using four estimation procedures: unadjusted, covariate-adjusted, covariate-adjusted with prognostic score,

Table 1: Parameters for all simulation scenarios.

Scenario P(X ′) P(X) P(Y ′|X ′) P(Y0|X) P(Y1|X)
l′ h′ L H a′ b′ c′ a0 b0 c0 a1 b1 c1

Baseline −1 1 −1 1 0.5 1 0 0.5 1 0 0.5 1 0
Strong effect −1 1 −1 1 0.5 1 0 0.5 1 0 0.5 1 5
Linear −1 1 −1 1 0 1 0 0 1 0 0 1 0
Heterogeneous effect −1 1 −1 1 0.5 1 0 0.5 1 0 0 1 0
Surrogate outcome −1 1 −1 1 0.5 −1 0 0.5 1 0 0.5 1 0
Covariate shift −2 0 −1 1 0.5 1 0 0.5 1 0 0.5 1 0

Parameters for the baseline scenario are shown in bold.
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Table 2:Mean-squared errors (MSEs) of each estimator in each simulation scenario.

Scenario Unadjusted +Covariates +Covariates +Covariates Oracle
+ interactions + prognostic score + prognostic score

+ interactions

Baseline 0.076 0.051 0.017 0.017 0.008
Strong effect 0.077 0.051 0.018 0.018 0.008
Linear 0.035 0.008 0.008 0.008 0.008
Heterogeneous effect 0.055 0.030 0.021 0.022 0.020
Surrogate outcome 0.075 0.050 0.038 0.037 0.008
Covariate shift 0.077 0.050 0.049 0.049 0.008

The result with the smallest MSE (excluding the oracle estimator) is shown in bold. The headings correspond to: Z⊤ = [1, ̃W]
(unadjusted), Z⊤ = [1, ̃W ,

̃X⊤, ̃W ̃X⊤] (+covariates + interactions), Z⊤ = [1, ̃W ,
̃X⊤, ̃M⊤

,
̃W ̃X⊤, ̃W ̃M⊤] (+covariates + prognostic

score + interactions), Z⊤ = [1, ̃W ,
̃X⊤, ̃M⊤] (+covariates + prognostic score), Z⊤ =

[
1, ̃W ,

̃W�̃�0(X)⊤
]
(oracle).

and covariate-adjusted with prognostic score sans interactions.9 We also repeated the prognostic-score-and-
covariate-adjusted analysis using the true “oracle” prognostic score 𝔼 [Y0|X = x] to show a best case scenario
in terms of the prognostic model (this estimator would not be feasible in practice). Results from additional
regression specifications are available in the appendix.

The result was a set of five effect estimates. We calculated the squared-error of each estimate relative to
the true treatment effect, 𝔼 [Y1 − Y0], known from the data-generating counterfactual distribution, repeated
this process 10,000 times, and averaged the squared-errors to obtain MSEs for each estimator. The results are
shown in Table 2.

The simulation results support the theory in that the MSE of the estimator with prognostic covariate
adjustment was always less than or equal to the MSE without it. The only two cases in which prognostic
covariate adjustment didnot substantially decrease theMSEwere the linear anddistributional shift scenarios.
In the former, the linear prognostic relationship is already captured by the other baseline covariates so there is
no additional benefit to adding the prognostic score, as expected. In the latter, the prognostic model may not
generalize well to the study population, thereby losing a significant portion of its predictive power. All other
scenarios, however, demonstrate that adding the prognostic score significantly reduced the MSE. Finally,
most or all of the benefit was realized without including the interaction terms, except for a modest gain in the
scenario with treatment effect heterogeneity.

5 Case study
In addition to the simulations presented above, we re-analyzed data from an existing trial to demonstrate
how prognostic covariate adjustment decreases variance relative to a standard covariate-adjusted analysis.
Our results show that prognostic covariate adjustment decreases the estimated standard errors relative to raw
covariate adjustment.

Our demonstration trial, reported by Quinn et al. [32], was conducted to determine if DHA supplemen-
tation slows cognitive and functional decline for individuals with mild to moderate Alzheimer’s disease. The
trial was performed through the Alzheimer’s Disease Cooperative Study (ADCS), a consortium of academic

9 “Adjusted for” means by default that we included both the main effect of the covariate and its interaction with the treatment.
We also report results for an estimator adjusted for the covariates and prognostic score, but excluding the interaction term.
Regulatory guidance often recommends against the inclusion of interactions without strong a-priori evidence for their existence
[17]. Andalthough theoretically useful, the practical benefits from including the interactionsmaybenegligible in practice. Indeed,
it follows from Theorem A.5 that the benefit disappears when there is no heterogeneity of effect.
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medical centers and private Alzheimer disease clinics funded by the National Institute on Aging to conduct
clinical trials on Alzheimer disease.

Quinn et al. randomized 238 subjects to a treatment arm given DHA and 164 subjects to a control arm
given placebo. This trial measured a number of covariates at baseline including demographics and patient
characteristics (e.g. sex, age, region,weight), lab tests (e.g. bloodpressure,ApoE4 status [33]), and component
scores of cognitive tests. A full list of the 37 covariates we used is available in the appendix (see Table 4). Any
missing covariate values were mean-imputed in our reanalysis.

The primary outcomeof interest for our reanalysiswas the increase in theAlzheimer’s disease assessment
scale – Cognitive subscale (ADAS-Cog 11, a quantitative measure of cognitive ability) [34] over the duration of
the trial (18months). Decrease in an activities of daily living (ADL) score [35] and increase in Clinical dementia
rating (CDR) [36] were also recorded in the study andwe treated these as secondary endpoints to demonstrate
the benefits of prognostic covariate adjustment for a surrogate outcome.

Before examining the trial data, we fit a prognostic model for the increase in ADAS-Cog 11 over 18
months conditional on the measured covariates. To train the model we used a large historical training
dataset comprised of 6919 early-stage Alzheimer’s patients. These data came from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) and the Critical Path for Alzheimer’s Disease (CPAD) database [37, 38], and
included measurements of ADAS-Cog 11 at 6-month, or more frequent, intervals post-baseline. The ADNI
dataset is made up of longitudinal data from 4 sequential large observational studies in Alzheimer’s disease,
while the CPAD dataset is made up of control arm data from 29 Alzheimer’s disease clinical trials. These data
also included the same baseline covariates as were measured in the DHA trial (imputed to a column mean
where missing). We used a random forest with 1000 trees to learn the prognostic model; all other parameters
were left to their defaults in the python sklearn package [31].

Once fit, we applied our prognostic model to generate a prognostic score for each subject in the trial
dataset; that is, we used the trained random forest model to predict the change in ADAS-Cog11 for a particular
patient under standard-of-care. We then estimated the treatment effect on each outcome using three different
methods: (i) difference-in-means (i.e. unadjusted linear regression), (ii) linear regression adjusted for the
baseline covariates, and (iii) linear regression adjusted for the baseline covariates and the ADAS-Cog 11
prognostic score corresponding to the appropriate timepoint for the trial, and (iv) the same estimator as case
(iii) but with the interaction terms omitted. Note that in cases (iii) and (iv) the ADL and NPI outcomes were
analyzed with our ADAS-Cog 11 prognostic score, not a separate ADL or CDR prognostic score. The purpose of
this is to demonstrate how prognostic covariate adjustment works for a surrogate outcome. We report results
in terms of an estimated effect and 1.96 times an estimated standard error (i.e. a 95% confidence interval) in
Table 3.

Concordant with our simulation studies, the standard errors for the effect obtained using prognostic
covariate adjustment were less than or equal to those obtained using unadjusted for standard covariate-
adjusted analyses. This led to narrower confidence intervals (which are still theoretically guaranteed to have
the correct frequentist coverage). Using prognostic covariate adjustment decreased the standard error for
estimated treatment effects on ADAS-Cog11 and ADL, even though we adjusted for the predicted change in

Table 3: Results from the reanalysis of the DHA trial.

Outcome Unadjusted +Covariates +Covariates +Covariates
+ interactions + prognostic score + prognostic score

+ interactions

ADAS-Cog 11 −0.10± 2.02 0.58± 1.72 0.56 ± 1.69 0.41± 1.69
ADL −0.31± 3.11 0.27± 2.58 0.34± 2.56 −0.06± 2.43
CDR −0.01± 0.65 0.03± 0.54 0.03 ± 0.54 0.04± 0.54

Results are shown in terms of estimated effect±1.96 × estimated standard deviation (Sandwich estimator). The result with the
smallest estimated standard deviation is in bold for each outcome (row). Headings are the same as in Table 2.
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ADAS-Cog11 for both outcomes. There was negligible impact of including the surrogate prognostic score for
CDR. Similarly, including the interaction term in the prognostic-adjusted regressions had little, or deleterious,
impact in this experiment.

Covariate and prognostic covariate adjustment did modify the point estimates for the treatment effects
to some extent, but only minimally relative to the size of the estimated standard errors. Even though the
point estimates for individual studies can change, adjusting for baseline covariates or a prognostic score does
not add bias [16, 23, 24]. In this particular trial, none of the outcomes demonstrated statistically significant
improvements regardless of the analysis used, consistent with the original analyses of these data [32].

5.1 Power analysis
In addition to the reanalysis,we consideredhowwewouldpower this trial hadwebeen involvedprospectively.
Since trials must be designed before they are run, we did not use any data collected from the DHA trial to do
this.

Basedonourhistorical trainingdataset,weestimated themarginal outcomevariance tobe𝜎2
0 = 61.76and

the cross-validated prognosticmodel-outcome correlation to be 𝜌0 = 0.44 (themaximumcorrelation between
any single covariate and the outcome in the training data was 0.39, for baseline ADAS Cog 11 comprehension
sub-score). Assuming common variances 𝜎2

0 = 𝜎

2
1 the anticipated upper bound of the sampling variance of

the unadjusted estimator (Eq. (4)) came out to 0.64 with 238 treated and 164 control subjects (n = 402, 3:2),
giving a power of ≥80% to detect an effect size of 2.25 points in ADAS-Cog11 via Eq. (5).

Assuming these same parameters and a common correlation 𝜌0 = 𝜌1, numerical optimization10 of Eq. (3)
composedwith Eq. (5) at the same 3:2 randomization ratio showed that≥80% power was attainable with only
131 control and 190 treated subjects (n = 321) when knowledge of the prognostic model was leveraged in the
design. This represents an impressive 20% reduction in the enrollment that would have been required.

6 Discussion
Our theoretical and empirical results demonstrate that linear adjustment for a prognostic score is an effective
and safe method for leveraging historical data to reduce uncertainty in randomized trials. In fact, prognostic
covariate adjustment is optimal (i.e. semiparametric efficient) when there is a constant treatment effect and
the prognostic model accurately predicts the conditional mean of the trial control arm. These benefits may
also be exploited to design smaller trials that maintain their power.

Heuristically, the reason that prognostic covariate adjustment via a linear model improves efficiency
is that the prognostic score captures nonlinear relationships between the covariates and outcome that the
linear model could not otherwise exploit. This helps to “explain away” some amount of previously unex-
plained variability in the outcome. It is easy to show that if the prognostic score is a linear function of the
coefficients (i.e.m(X) = X⊤

𝛼) then adjusting for it in addition to the covariates cannot improve efficiency (in
fact, the linear model becomes indeterminate). The prognostic model must therefore be nonlinear to provide
any benefit. Our simulation results bear out this conclusion; there was no gain from prognostic covariate
adjustment in the linear scenario. The lack of improvement in the covariate shift scenario may also be due to
a similar phenomenon–the smaller the support of the covariate distribution, the better a linear (or constant)
approximation will capture the outcome-covariate relationship.

Together, these results can be summarized as follows: adjusting for a prognostic score obtained from a
nonlinear predictive model trained on a large database of historical control arm data provides near optimal

10 Note that Eq. (6) does not apply here because the desired randomization ratio is not 1:1. Despite this, the obtained sample size
reduction is still close to 𝜌2.
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treatment effect estimates in randomized trials with continuous outcomes (given previously stated condi-
tions). There has recently been tremendous growth in the availability and performance of technology for
nonlinear regression modeling (i.e. supervised machine learning), particularly in the area of deep learning.
The intersection of this technological development with the creation of large historical control databases
provides an opportunity to use prognostic covariate adjustment to substantially improve future clinical trials.

As an alternative, onemight forego the historical data altogether and use a nonlinear analysis directly on
the trial data in order to account for any nonlinearities in the relationship between covariates and outcome.
Several semiparametric efficient procedures exist for this kind of nonlinear/adaptive covariate adjustment
[39–41]. If there is effect heterogeneity, adaptive adjustment methods may have the upper hand because the
prognostic score will be less predictive of the treatment-arm outcomes. One practical advantage of adaptive
adjustment is that there is no need for historical data at all, but that also implies that no information from
historical data sources is used to improve the estimate (e.g. it may be easier to capture nonlinearities using
large historical datasets, which could include hundreds of thousands of samples, than it is in small trial
datasets).

On theotherhand, linearprognostic covariate adjustmenthas its ownset ofpractical advantages. Perhaps
the most important of these is that the analysis is a standard linear regression once the prognostic score has
been calculated. This makes it easy to explain and interpret for trialists, simple to implement with existing
software, and makes the approach suitable under current regulatory guidance [17]. The estimator can be
further simplified by omitting the interaction terms if little effect heterogeneity is suspected. The procedure is
alsomodular: constructionof theprognosticmodelmaybeoutsourced to agroupofmachine learning experts,
which also makes it possible to separate access to the historical and trial datasets. In fact, the historical data
can be used to train a prognostic model within a privacy preserving framework with guaranteed protection
of private health information [42, 43]. Lastly, our conservative variance bound (Theorem 4) makes it easy to
prospectively power a trial without estimating or assuming a large number of population parameters.

It is also possible that prognostic covariate adjustment retains a statistical advantage in finite samples
relative to direct nonlinear adjustment, thoughwe have left theoretical investigation of this question to future
studies. The flexibility of our procedurewith respect to the prognosticmodel also allows for the exploitation of
large proxy datasets where a surrogate outcomewasmeasured. This includes cases where the causal contrast
of interest is between two non-baseline treatments (e.g. a trial with three or more treatment levels). The use
of historical data could therefore serve as an effective regularizer for learning in small samples, but more
research will be necessary to make that conclusion. It should also be possible to combine the advantages of
multiple procedures, i.e. to perform adaptive adjustment for a fixed prognostic model trained on historical
data.

Further, we show that efficiency is usually improved to some extent even if the prognostic model is
imperfect or the treatment effect is not constant. In fact, prognostic covariate adjustment can never hurt
asymptotic efficiency. For some studies, including a prognostic score as an adjustment covariate could mean
thedifferencebetweenanull result andacleardemonstrationof efficacyorharm.Moreover, theunbiasedness,
type-I error rate control, and correct confidence interval coverage of prognostic covariate adjustment are
inherent properties of the procedure for any choice of prognostic model that only uses information from a
subject’s baseline covariates.

For our efficiency improvement to hold in practice, all that is necessary is for the trial to be large
enough for the asymptotic variance to be a reasonable estimate and for mild technical regularity assumptions
(which underpinmost asymptotic theory) to hold.11 These assumptions are not unique to prognostic covariate
adjustment and are required for almost any meaningful frequentist analysis of the data.

It should also be possible to exploit prognostic covariate adjustment as a component in other kinds
of estimators (repeated measures, binary outcomes, survival models etc.). We have limited our theoretical

11 These are technical conditions that might allow for the exchange of integration and differentiation or guarantee the existence
of a mean value. They have no practical importance or violation in almost all real-world scenarios.
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discussion here to the linear model since it is so common, but a prognostic score may be used as a covariate
in any analysis that allows for covariate adjustment. It remains to be seen what optimality properties are
satisfied by doing prognostic covariate adjustment in each kind of analysis and under what conditions.

prognostic covariate adjustment also presents a method for optimally reducing the dimensionality of the
adjustment covariate set even when performing standard linear analyses. In our empirical demonstration we
included37 covariates (and their interactionswith treatment) in the linear regressionmodel in order topresent
a fair comparison with prognostic covariate adjustment, but including this many adjustment covariates is
rarely if ever done in practice. The prognostic score offers an opportunity to exploit the information present in
all of those covariates without necessarily having to include each of them in the analysis. However, including
the raw covariates by themselves helps ensure some reduction in variance even if the prognostic score has a
very poor correlation with the outcome. Similarly, including treatment-covariate interaction terms can only
be beneficial (in large samples) but there may be a practical limit to the number of terms an analyst is willing
to include in the analysis.

Regardless of theoretical considerations, our work shows that prognostic covariate adjustment offers
practical advantages even when the assumptions that guarantee some forms of optimality are violated. This
is borne out by the analyses of the secondary ADL and CDR outcomes using the ADAS-Cog 11 prognostic score
in our empirical demonstration. Since there is no (asymptotic) harm in including a prognostic score, it may
behoove trialists working with large-enough samples to amass and exploit a variety of prognostic scores for
each analysis.

We used random forests as the prognostic models in our demonstration, but alternative methods may be
preferred in practice. Missing covariates, multiple longitudinal outcomes, and high-dimensional covariates
(e.g. a whole genome) may be present in real trial data. Deep learning methods (and in particular generative
deep learning methods) are often well suited to handle these challenges [44–47]. Deep learning methods
can also exploit transfer learning to improve performance when the relevant historical data are meager [48].
Moreover, most trials actually havemany outcomes of interest (e.g. multiple primary or secondary endpoints,
adverse events, and biomarkers monitored for safety). Often, each of these outcomes is measured at multiple
timepoints during a trial. In principle, the development of comprehensive, longitudinal predictive models of
patient outcomes under standard-of-carewould enable prognostic covariate adjustment to be used for each of
these analyses, thereby enabling the design of studies that require fewer subjects to achieve desired operating
characteristics.

In comparison to other kinds of historical borrowing methods, prognostic covariate adjustment theo-
retically guarantees strict type-I error rate control and confidence interval coverage in general settings. In
anything but the smallest of trials, there is no need for elaborate simulations to demonstrate the trial operat-
ing characteristics (as are usually required for methods that cannot theoretically guarantee control of type I
error). Moreover, we provide a simple formula in theorem 4 that can be used to calculate power prospectively
while accounting for the beneficial effect of prognostic covariate adjustment.

Data availability
The data used in this study are available from the following sources, subject to their discretion.

Certain data used in the preparation of this article were obtained from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to
test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other biologi-
cal markers, and clinical and neuropsychological assessment can be combined to measure the progression
of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date information, see
www.adni-info.org.

Certain data used in the preparation of this article were obtained from the Critical Path for Alzheimer’s
Disease (CPAD)database. In 2008, Critical Path Institute, in collaborationwith theEngelbergCenter forHealth

http://adni.loni.usc.edu
http://www.adni-info.org
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Care Reform at the Brookings Institution, formed the Coalition Against Major Diseases (CAMD), which was
then renamed to CPAD in 2018. The Coalition brings together patient groups, biopharmaceutical companies,
and scientists from academia, the U.S. Food and Drug Administration (FDA), the EuropeanMedicines Agency
(EMA), the National Institute of Neurological Disorders and Stroke (NINDS), and the National Institute on
Aging (NIA). CPAD currently includes over 200 scientists, drug development and regulatory agency profes-
sionals, from member and non-member organizations. The data available in the CPAD database has been
volunteered by CPAD member companies and non-member organizations.

Certain data used in the preparation of this article were obtained from the University of California, San
Diego Alzheimer’s Disease Cooperative Study Legacy database.
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Appendix A. Mathematical results
Throughout we assume enough regularity conditions for the asymptotic normality of M-estimators to hold.
The details are found in chapter 5 (thm 5.23) of van der Vaart [49].

Lemma A.1. (Rosenblum).The influence function for the linear regression treatment effect estimatorwedescribe
in Section 3 is 𝜓 = 𝜓 1 − 𝜓0 where
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This follows from results in Robins et al. [50]. An accessible presentation for the case of generalized linear
models is given in Rosenblum and Laan [51].

Definition A.1. (Difference-in-means). The “difference-in-means” (or “unadjusted”) estimator of 𝜏 = 𝜇1 − 𝜇0
is 𝜏Δ = ̂𝔼 [Y|W1]− ̂𝔼 [Y|W0].

Note that throughout the appendix we omit the subscript n on estimators. E.g. 𝜏Δ is shorthand for 𝜏Δ,n
and our asymptotic statements refer to the sequence of estimators as n becomes large.

Lemma A.2. The difference-in-means estimator has asymptotic variance given by

n𝕍 [𝜏Δ]
p
←←←←←←←←←←→

𝜎

2
0

𝜋0
+ 𝜎

2
1

𝜋1
(8)

where 𝜎
𝑤

= 𝕍 [Y
𝑤
].

Proof. This fact is well-known. One proof follows the outline of 7 below taking Z⊤ = [1,W]. □

Definition A.2. (ANCOVA I). The “ANCOVA I” estimator of 𝜏 = 𝜇1 − 𝜇0 (denoted 𝜏 I) is the effect estimated
using a linear regression with predictors Z⊤ = [1,W,X⊤] and outcome Y.

Definition A.3. (ANCOVA II). The “ANCOVA II” estimator of 𝜏 = 𝜇1 − 𝜇0 (denoted 𝜏 II) is the effect estimated
using a linear regression with predictors Z⊤ = [1, ̃W,

̃X⊤

,
̃W ̃XT] and outcome ̃Y.

The following two Theorems A.3 and A.4 are mild generalizations of or follow closely from results stated
in Leon et al. [24] and Yang and Tsiatis [16]. Details are provided here for the reader’s convenience.

Theorem A.3. TheANCOVA I estimator is asymptotically unbiased for 𝜏 = 𝜇1 − 𝜇0 and has asymptotic variance
given by

n𝕍 [𝜏 I]
p
←←←←←←←←←←→

𝜎

2
0

𝜋0
+ 𝜎

2
1

𝜋1
+
(

1
𝜋0𝜋1

)
𝜉

⊤V𝜉 − 2
(

1
𝜋0𝜋1

)
𝜉

⊤

∗ V𝜉 (9)

where 𝜉 = 𝜋0ℂ [Y0,X]+ 𝜋1ℂ [Y1,X], 𝜉∗ = 𝜋0ℂ [Y1,X]+ 𝜋1ℂ [Y0,X], and V = 𝕍 [X]−1.

Proof. We begin by applying Lemma A.1. Minimization of the expected log-likelihood shows that ̂
𝛽

∗ =
𝔼
[
ZZ⊤

]−1 𝔼 [ZY]. Some algebra12 demonstrates

̂
𝛽

∗ =
[
𝜇0, 𝜏, (V𝜉)⊤

]
⊤ (10)

12 The identity 𝔼 [AB] = ℂ [A,B]+ 𝔼 [A]𝔼 [B] and the fact that W⊥ Y
𝑤

,X and W
𝑤

Y = W
𝑤

Y
𝑤

by our structural assumption
(Eq. (1)) may be used to show that

𝔼
[
ZZ⊤

]−1 =
⎡⎢⎢⎢⎢⎣

1
𝜋0

+ 𝜂

⊤V𝜂 − 1
𝜋0

−V𝜂

− 1
𝜋0

1
𝜋0𝜋1

0

−V𝜂 0 V

⎤⎥⎥⎥⎥⎦
𝔼 [ZY] =

⎡⎢⎢⎣

𝜇

𝜋1𝜇1
𝜇𝜂 + 𝜉

⎤⎥⎥⎦

where 𝜂 = 𝔼 [X],𝜇 = 𝔼 [Y], 𝜉 = ℂ [X,Y], andV = 𝕍 [X]−1. The inverse is easiest to verify by computing andmultiplying by𝔼
[
ZZT

]
.
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where V = 𝕍 [X]−1, 𝜉 = ℂ [X,Y], and 𝜏 = 𝜇1 − 𝜇0. Thus �̂�

∗
𝑤

(X) = 𝜇0 +𝑤𝜏 + ̃X⊤V𝜉 = 𝜇
𝑤

+ ̃X⊤V𝜉. In this
equation and from here on, let ̃X = X − 𝔼 [X]. So clearly �̂�∗

𝑤

= 𝜇
𝑤

. Then, from Eq. (7),

𝜓
𝑤

= W
𝑤

𝜋
𝑤

(Y − 𝜇
𝑤

)−
̃W
𝑤

𝜋
𝑤

( ̃X⊤V𝜉)
⏟⏟⏟

−h
𝑤

(X)

(11)

Where ̃W
𝑤

= W
𝑤

− 𝜋
𝑤

. An application of A.1 and some algebra gives

𝜓I =
W1
𝜋1

(Y − 𝜇1)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝜓1,Δ

− W0
𝜋0

(Y − 𝜇0)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝜓0,Δ
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝜓Δ

− (W1 − 𝜋1)
( ̃X⊤V𝜉)
𝜋0𝜋1

⏟⏟⏟

−h(X)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝜙

(12)

It is known that all regular and asymptotically linear estimators of the treatment effect have an influence
function of this form with h(X) dependent on the choice of estimator [24, 26].

By the theory of influence functions, our estimator has a limiting distribution [26]
√
n(𝜏 I − 𝜏)

d
←←←←←←←←←←→

(
0,𝔼

[
𝜓

2
I
])

(13)

The asymptotic variance of 𝜏 I is thus𝔼
[
𝜓

2
I
]
= 𝔼

[
(𝜓Δ − 𝜙)2

]
= 𝔼

[
𝜓

2
Δ
]
− 2𝔼 [𝜓Δ𝜙]+ 𝔼

[
𝜙

2]. The first term
is the variance of the influence function for the difference-in-means (also called “unadjusted”) estimator. It
may be verified that this evaluates to 𝔼

[
𝜓

2
Δ
]
= 𝜎

2
0

𝜋0
+ 𝜎

2
1

𝜋1
where 𝜎2

𝑤

= 𝕍 [Y
𝑤
]. The variance of 𝜙 is

𝔼
[
𝜙

2] = 𝔼

[(
W1 − 𝜋1
𝜋0𝜋1

̃X⊤V𝜉
)2

]
(14)

= 𝔼
[
(W1 − 𝜋1)2

]
𝜋

2
0𝜋

2
1

𝜉

⊤V𝔼
[
̃X ̃X⊤

]
V𝜉 (15)

=
(

1
𝜋0𝜋1

)
𝜉

⊤V𝜉 (16)

The covariance of the two terms involves the expectations 𝔼
[
(Y

𝑤

− 𝜇
𝑤

) ̃X
]
= ℂ [Y

𝑤

,X] = 𝜉
𝑤

(note that
𝜉 = 𝜋0𝜉0 + 𝜋1𝜉1):

𝔼 [𝜓Δ𝜙] = 𝔼
[
𝜓1,Δ𝜙

]
− 𝔼

[
𝜓0,Δ𝜙

]
(17)

= 1
𝜋1
𝜉

⊤

1 V𝜉 −
−1
𝜋0

𝜉

⊤

0 V𝜉 (18)

=
(

1
𝜋0𝜋1

)
𝜉

⊤

∗ V𝜉 (19)

where we have introduced 𝜉∗ = 𝜋1𝜉0 + 𝜋0𝜉1. Assembling obtains the desired result. □

Corollary A.3.1. When X ∈ R (a single covariate), a consistent estimate of the sampling variance 𝕍 [𝜏 I] is

𝜈

2
I =

𝜎

2
0

n0
+ 𝜎

2
1

n1
+ n0n1

n

(
𝜌0𝜎0
n1

+ 𝜌1𝜎1
n0

)2
− 2n0n1n

(
𝜌0𝜎0
n1

+ 𝜌1𝜎1
n0

)(
𝜌0𝜎0
n0

+ 𝜌1𝜎1
n1

)
(20)

where 𝜌
𝑤

= ℂ [Y
𝑤

,X]∕
√
𝕍 [X]𝕍 [Y

𝑤
] and the “hat” quantities are any consistent estimates of their respective

population parameters.
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Proof. This follows from the definitions and Slutsky’s theorem. □

Corollary A.3.2. If either 𝜋0 = 𝜋1 or 𝜉0 = 𝜉1, then

n𝕍 [𝜏 I]
p
←←←←←←←←←←→

𝜎

2
0

𝜋0
+ 𝜎

2
1

𝜋1
−
(

1
𝜋0𝜋1

)
𝜉

⊤

∗ V𝜉∗ (21)

Theorem A.4. TheANCOVA II estimator is asymptotically unbiased for 𝜏 = 𝜇1 − 𝜇0 andhasasymptotic variance
given by

n𝕍 [𝜏 II]
p
←←←←←←←←←←→

𝜎

2
0

𝜋0
+ 𝜎

2
1

𝜋1
−
(

1
𝜋0𝜋1

)
𝜉

⊤

∗ V𝜉∗ (22)

Proof. Arguments similar to those in Theorem A.3 show that the influence function for the GLM marginal
effect estimator with this specification is identical to Eq. (12) except that 𝜉 = 𝜋0𝜉0 + 𝜋1𝜉1 is replaced by
𝜉∗ = 𝜋1𝜉0 + 𝜋0𝜉1. Specifically 𝜓 II = 𝜓 1,II − 𝜓0,II with

𝜓
𝑤,II =

W
𝑤

𝜋
𝑤

(Y − 𝜇
𝑤

)−
̃W
𝑤

𝜋
𝑤

(
̃X⊤V𝜉∗

)
⏟⏞⏟⏞⏟

−h
𝑤

(X)

(23)

The result follows from proceeding along the outline of Theorem A.3. □

Corollary A.4.1. When X ∈ R (a single covariate), a consistent estimate of the sampling variance 𝕍 [𝜏 II] is

𝜈

2
II =

𝜎

2
0

n0
+ 𝜎

2
1

n1
− n0n1

n

(
𝜌0𝜎0
n0

+ 𝜌1𝜎1
n1

)2
(24)

Corollary A.4.2. Adding covariates to the ANCOVA II estimator can only decrease its asymptotic variance.

Proof. Consider using covariates X with variance Σx and covariance with Y𝑤

of 𝜉
𝑤,x versus a set of covariates

[X,M] (M ∈ ℝ) such thatM is not a linear combination of the variables in X. Letℂ [X,M] = 𝜁 , 𝕍 [M] = 𝜎

2
m and

ℂ [Y
𝑤

,M] = 𝜉
𝑤,m. Let 𝜉m∗ = 𝜋0𝜉1,m + 𝜋1𝜉0,m and 𝜉x∗ = 𝜋0𝜉1,x + 𝜋1𝜉0,x. From Eq. (22) and somematrix algebra

the difference in asymptotic variance between these two estimators is

−
(

1
𝜋0𝜋1

) (
𝜉m − 𝜉

⊤

x Σ
−1
x 𝜁

)2
𝜎
2
m − 𝜁

⊤Σ−1
x 𝜁

(25)

The denominator must be positive because 𝕍 [X,M] ≥ 0, 𝕍 [X] ≥ 0 implies det(𝕍 [X,M]) =
det

(
Σ−1
x
) (

𝜎

2
m − 𝜁

⊤Σ−1
x 𝜁

)
≥ 0. □

Theorem A.5. ANCOVA II is a more efficient estimator than ANCOVA I or difference-in-means. ANCOVA I may
or may not be more efficient than difference-in-means (unless 𝜋0 = 𝜋1 = 0.5 or 𝜉0 = 𝜉1, in which case it is as
efficient as ANCOVA II). In a slight abuse of notation,

𝕍 [𝜏 II] ≤ 𝕍 [𝜏 I] (26)

𝕍 [𝜏 II] ≤ 𝕍 [𝜏Δ] (27)

𝕍 [𝜏 I] ≰ 𝕍 [𝜏Δ] (28)

𝜋0 = 𝜋1 ⇒ 𝕍 [𝜏 I] = 𝕍 [𝜏 II] (29)
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Proof. 𝕍 [𝜏 II] ≤ 𝕍 [𝜏 I] because Eq. (22) subtracted from Eq. (9) is (V1∕2(𝜉 − 𝜉∗))2∕(𝜋0𝜋1) ≥ 0. 𝕍 [𝜏 II] ≤ 𝕍 [𝜏Δ]
is self-evident from Eq. (22). To show 𝕍 [𝜏 I] ≰ 𝕍 [𝜏Δ] we rely on an example: using X ∈ R with 𝜋1 = 5∕6 (so
𝜋0 = 1∕6), 𝜉1 = 4 and 𝜉0 = 1 in Eq. (9) gives a positive addition to 𝕍 [𝜏Δ]. □

Lemma A.6. Consider using the ANCOVA II estimator with an arbitrary (multivariate) transformation of the
covariates f (X) in place of the raw covariates X. Among all fixed transformations f (X), the transformation
[𝜇0(X), 𝜇1(X)]⊤ is optimal in terms of efficiency. Furthermore, the estimator is semiparametric efficient: the
ANCOVA II estimator with [𝜇0(X), 𝜇1(X)]⊤ used as the vector of covariates has the lowest possible asymptotic
variance among all regular and asymptotically linear estimators with access to the covariates X.

Consider replacing X in the interacted linear model (ANCOVA II) with an arbitrary fixed (possibly multi-
variate) function of the covariates f (X). By Eq. (23) and our definitions of 𝜉∗ and V the influence function for
this estimator is 𝜓 = 𝜓 1 − 𝜓0 with

𝜓
𝑤

= W
𝑤

𝜋
𝑤

(Y − 𝜇
𝑤

)−
̃W
𝑤

𝜋
𝑤

(
( f (X)− 𝔼

[
f (X)

]
)⊤Vf 𝜉 f∗

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

−h
𝑤

(X)

(30)

where 𝜉 f∗ = 𝜋1ℂ
[
Y0, f (X)

]
+ 𝜋0ℂ

[
Y1, f (X)

]
andVf = 𝕍

[
f (X)

]−1. Consider now using the special transforma-
tion f (X)⊤ = [𝜇0(X), 𝜇1(X)] where𝜇𝑤

(X) = 𝔼 [Y
𝑤

|X]. Note thatℂ [
Y
𝑤

, 𝜇
𝑤

(X)
]
= 𝕍

[
𝜇
𝑤

(X)
]
andℂ

[
Y1, 𝜇0(X)

]
=

ℂ
[
𝜇1(X), 𝜇0(X)

]
by an orthogonal decomposition of Y

𝑤

.13 Plugging these in and performing the appropriate
algebra shows that V f 𝜉 f∗ in this case is [𝜋1, 𝜋0]⊤ so h

𝑤

(X) in 30 is 𝜋0(𝜇1(X)− 𝜇1)+ 𝜋1(𝜇0(X)− 𝜇0). A little
algebra shows

𝜓 = 𝜓1 − 𝜓0 (31)

= W1
𝜋1

(Y − 𝜇1)−
W0
𝜋0

(Y − 𝜇0)− (W1 − 𝜋1)
[
𝜋0(𝜇1(X)− 𝜇1)+ 𝜋1(𝜇0(X)− 𝜇0)

𝜋0𝜋1

]
(32)

13 Let R = Y
𝑤

− 𝔼 [Y
𝑤

|X] be the part of Y
𝑤

orthogonal to 𝔼 [Y
𝑤

|X] = 𝜇
𝑤

(X) so that Y
𝑤

= R+ 𝜇
𝑤

(X). Note that

ℂ
[
Y
𝑤

, f (X)
]
= ℂ

[
R, f (X)

]
+ ℂ

[
𝜇
𝑤

(X), f (X)
]

Now we prove a known result that ℂ
[
R, f (X)

]
= 0 for any function f :

ℂ
[
R, f (X)

]
= 𝔼

⎡⎢⎢⎢⎢⎣
(R− 𝔼 [R]

⏟⏟⏟

0

)( f (X)− 𝔼
[
f (X)

]
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

̃f (X)

)

⎤⎥⎥⎥⎥⎦
= 𝔼

[
(Y

𝑤

− 𝔼 [Y
𝑤

|X])̃f (X)]

= 𝔼
[
𝔼
[
(Y

𝑤

− 𝔼 [Y
𝑤

|X])̃f (X)|X]]

= 𝔼
[
(𝔼 [Y

𝑤

|X]− 𝔼 [Y
𝑤

|X])̃f (X)]

= 0
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The result is precisely the efficient influence function for the treatment effect [24, 26]. It is known that no
regular and asymptotically linear (RAL) estimator (which essentially all practical and reasonable estimators
are) can be more efficient than any estimator with this influence function.

Corollary A.6.1. Presume a constant treatment effect: 𝜇1(X) = 𝜇0(X)+ 𝜏 . Then the ANCOVA II analysis that
uses 𝜇0(X) in the role of X has the lowest possible asymptotic variance among all regular and asymptotically
linear estimators with access to the covariates X.

Proof. 𝜇1(X) = 𝜇0(X)+ 𝜏 implies ℂ
[
𝜇0(X), 𝜇1X

]
= 𝕍

[
𝜇0(X)

]
= 𝕍

[
𝜇1(X)

]
. Following the outline for the proof

of Lemma A.6 above shows that the influence function for the ANCOVA II estimator with 𝜇0(X) as the single
covariate is

𝜓 = W1
𝜋1

(Y − 𝜇1)−
W0
𝜋0

(Y − 𝜇0)− (W1 − 𝜋1)
[
𝜇0(X)− 𝜇0

𝜋0𝜋1

]
(33)

which is the same as the efficient influence function when 𝜇1(X) = 𝜇0(X)+ 𝜏. □

Corollary A.6.2. CorollaryA.6.1alsoholdswhen theANCOVAII estimator is replacedby theANCOVAI estimator.

Proof. Theorem A.5 establishes that ANCOVA I is as efficient as ANCOVA II when ℂ
[
m(X),Y0

]
= 𝜉0 = 𝜉1 =

ℂ
[
m(X),Y1

]
. A constant treatment effect means that 𝜇1(X) = 𝜇0(X)+ 𝜏 and this ensures the equality of the

covariances. □

The following lemma is required for the proof that proceeds it.

Lemma A.7. Let f : → ℝbeabounded functiononacompact set and let ̂f n: → ℝbeasequenceofuniformly
bounded random functions such that | f (X)− ̂f n(X)| L2

←←←←←←←←←←←←←→0. Let X ∈  be a random variable independent of ̂f n.
Then 𝔼X

[
̂f n(X)

] p
←←←←←←←←←←→𝔼

[
f (X)

]
, ℂX

[
f (X), ̂f n(X)

] p
←←←←←←←←←←→𝕍

[
f (X)

]
, and 𝕍X

[
̂f n(X)

] p
←←←←←←←←←←→𝕍

[
f (X)

]
.

Proof. ̂f n and X are independent, so let their joint distribution factor into P′n and P. Now

∫

(
𝔼X

[
̂f n(X)

]
− 𝔼

[
f (X)

])2
dP′n = ∫

[
∫

̂f n(X)dP −
∫

f (X)dP
]2
dP′n

=
∫

[
∫

̂f n(X)− f (X)dP
]2
dP′n

≤
∫ ∫

[
̂f n(X)− f (X)

]2
dPdP′n (Jensen′sinequality)

→ 0

The final convergence holds by our assumption that | f (X)− ̂f n(X)| L2
←←←←←←←←←←←←←→0. This shows

𝔼X

[
̂f n(X)

] L2
←←←←←←←←←←←←←→𝔼

[
f (X)

]
and convergence in probability follows.

Taking advantage of the fact that |f |, |fn| ≤ b are bounded we can make similar arguments to
show that 𝔼X

[
f (X) ̂f n(X)

] p
←←←←←←←←←←→𝔼X

[
f (X)2

]
and 𝔼X

[
̂f n(X)2

] p
←←←←←←←←←←→𝔼X

[
f (X)2

]
. Slutsky’s theorem and the definition

of covariance and variance then imply ℂX

[
f (X), ̂f n(X)

] p
←←←←←←←←←←→ℂ

[
f (X), f (X)

]
and 𝕍X

[
̂f n(X)

] p
←←←←←←←←←←→𝕍

[
f (X)

]
as

desired. □

Corollary A.7.1. Let 𝕍X
[
̂f n(X)

]
> 𝜖 > 0. Under the conditions of the above lemma,

|||||
f (x)− ̂f n(x)

ℂX

[
f (X), ̂f n(X)

]

𝕍X
[
̂f n(X)

]
|||||

L2
←←←←←←←←←←←←←→0.
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Proof. Let Bn =
ℂX

[
f (X), ̂f n(X)

]

𝕍X
[
̂f n(X)

] . By the above lemma, our assumption that 𝕍X
[
̂f n(X)

]
> 𝜖 > 0, and Slutsky’s

theorem, Bn
p
←←←←←←←←←←→1. Together with the uniform bound on 𝕍X

[
̂f n(X)

]
and Cauchy-Schwarz this is also enough to

ensure that (1− Bn)
L2
←←←←←←←←←←←←←→0.

Nownote ||| f (x)− ̂f n(x)Bn
||| ≤

||| f (x)− ̂f n(x)
|||+ b ||1− Bn||by the triangle inequality and the fact that | ̂f n(x)| <

b. Thus

𝔼
[
( f (X)− ̂f n(X)Bn)2

]
= 𝔼

[
( f (X)− ̂f n(X))2

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

→0 (by assumption)

+ b2𝔼
[
(1− Bn)2

]
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

→0 (shownabove)

+ b𝔼
⎡⎢⎢⎢⎣
( f (X)− fn(X))
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

≤2b

(1− Bn)
⎤⎥⎥⎥⎦

= o(1)+ o(1)+ 2b2𝔼 [1− Bn]

→ 0

as desired. □

Theorem A.8. Presume X has compact support and there is a constant treatment effect: 𝜇1(X) = 𝜇0(X)+ τ
with |𝜇0(x)| < b bounded. Let m(x) be a (random) function learned from the external data (Y ′

,X′)n′ such that
|m(x)| < b is also bounded and |m(X)− 𝜇0(X)| L2

←←←←←←←←←←←←←→0 so that the learned model approaches the truth in MSE as
n′ →∞. If the number of trial samples n grows in tandem with the size of the historical data n′ (i.e. n = O(n′)),
then the ANCOVA II analysis that uses the learnedmodel m(X) in the role of X has the lowest possible asymptotic
variance among all regular and asymptotically linear estimators with access to the covariates X.

Proof. Define our estimator of interest as the ANCOVA II estimator that uses the learned modelm(X) in place
of the covariates X if m(X) is not numerically constant up to some machine precision and otherwise as the
difference-in-means estimator. Denote this estimator 𝜏 (omitting the II subscript for the duration of this proof).
Define the “oracle” estimator as the equivalent estimator that uses the true conditional mean 𝜇0(X) instead
of the estimate m(X) and denote this estimator 𝜏∗. The oracle estimator is obviously infeasible in practice
because 𝜇0(⋅) is not known. Corollary A.6.1 proves that the oracle estimator is semiparametric efficient (i.e.
has the lowest possible asymptotic variance among regular and asymptotically linear estimators). Thus,
letting 𝜈

2
∗ denote the optimal asymptotic variance, we have that

√
n(𝜏∗ − 𝜏) ⇝ N

(
0, 𝜈2∗

)
. If we can show

that
√
n(𝜏 − 𝜏

∗)
p
←←←←←←←←←←→0, then Slutsky’s theorem and the delta method imply that 𝜏 has the same asymptotic

properties as 𝜏∗, i.e.
√
n(𝜏 − 𝜏) ⇝ N

(
0, 𝜈2∗

)
. In other words, since the oracle estimator is efficient with a

known asymptotic variance, the feasible estimator is also efficient and has the same asymptotic variance
because the two are asymptotically equivalent.

Showing
√
n(𝜏 − 𝜏

∗)
p
←←←←←←←←←←→0 requires an intermediate estimator that is asymptotically equivalent to 𝜏. Using

the assumption of the constant effect and Eq. (23) from Theorem A.4 we can show (with an application of the
law of total variance) that the influence function for 𝜏 using some fixedm(⋅) is 𝜓 = 𝜓 1 − 𝜓0 with

𝜓
𝑤

= W
𝑤

𝜋
𝑤

(Y − 𝜇
𝑤

)−
̃W
𝑤

𝜋
𝑤

((
m(X)− 𝔼X[m(X)]

) ℂX[m(X), 𝜇0(X)]
𝕍X[m(X)]

)
(34)

where 𝔼X
[
m(X)

]
denotes that the expectation (or variance or covariance) is taken only with respect to X, i.e.

m(⋅) is considered fixed.
Let 𝜏 = ̂𝔼 [𝜓 + 𝜏] and let 𝜏∗ = ̂𝔼 [𝜓∗ + 𝜏] where𝜓∗ is the influence function above with 𝜇0(⋅) substituted

form(⋅). Note that 𝜏 and 𝜏 share the same influence function so we must have that
√
n(𝜏 − 𝜏)

p
←←←←←←←←←←→0. Similarly,√

n(𝜏∗ − 𝜏

∗)
p
←←←←←←←←←←→0. Therefore if

√
n(𝜏 − 𝜏

∗)
p
←←←←←←←←←←→0, then we have

√
n(𝜏 − 𝜏

∗)
p
←←←←←←←←←←→0 as desired. This is useful

because the estimator 𝜏 and its oracle counterpart 𝜏∗ are easier to work with.
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To wit, consider the difference 𝜏 − 𝜏

∗ = ̂𝔼
[
(𝜓1 − 𝜓0)−

(
𝜓

∗
1 − 𝜓

∗
0
)]
. So all we need to show the desired

convergence
√
n(𝜏 − 𝜏

∗)
p
←←←←←←←←←←→0 is to show

√
n̂𝔼

[
𝜓
𝑤

− 𝜓

∗
𝑤

] p
←←←←←←←←←←→0. Expanding,

̂𝔼
[
𝜓
𝑤

− 𝜓

∗
𝑤

]
= 1

n

n∑
i

̃W
𝑤,i

𝜋
𝑤

((
𝜇0(Xi)− 𝔼X

[
𝜇0(X)

]) ℂX
[
𝜇0(X), 𝜇0(X)

]
𝕍X

[
𝜇0(X)

]

−
(
m(Xi)− 𝔼X

[
m(X)

]) ℂX
[
m(X), 𝜇0(X)

]
𝕍X

[
m(X)

]
)

= 1
n

n∑
i

̃W
𝑤,i

𝜋
𝑤

(
𝜇0(Xi)−m(Xi)B

)
− 1
n

n∑
i

̃W
𝑤,i

𝜋
𝑤

(𝜇0 −mB) (35)

where we’ve abbreviated B = ℂX[m(X),𝜇0(X)]
𝕍X[m(X)] and m = 𝔼X

[
m(X)

]
. Our plan is to show that both of these terms

L2-converge to 0 at the
√
n rate so that they both converge in probability in that rate, as does their sum (which

is what we want). To show L2 convergence for the first term, we must consider the expression

𝔼
⎡⎢⎢⎣

(√
n 1n

n∑
i

̃W
𝑤

𝜋
𝑤

(𝜇0(X)−m(X)B)
)2⎤⎥⎥⎦

(36)

And show it converges to 0. Recalling thatm itself is random (depends on the external data (X′Y ′)), but
independent of the trial data (X,W,Y), note that we can treat m(⋅) as if it were a fixed function and B as a
fixed constant if we condition on the external data. After conditioning, the quantity inside the parentheses
is IID and has mean zero because its 𝜇0(X)−m(X)B and ̃W

𝑤

(by randomization) and because 𝔼
[
̃W
𝑤

]
= 0.

Therefore the quantity above is

𝔼
⎡⎢⎢⎣
n𝔼

⎡⎢⎢⎣

(
1
n

n∑
i

̃W
𝑤

𝜋
𝑤

(𝜇0(X)−m(X)B)
)2||||||

X′
,Y ′

⎤⎥⎥⎦
⎤⎥⎥⎦
= 𝔼

[
n𝕍

[(
1
n

n∑
i

̃W
𝑤

𝜋
𝑤

(𝜇0(X)−m(X)B)
)||||||

X′
,Y ′

]]

= 𝔼

[
n
n𝕍

[(
̃W
𝑤

𝜋
𝑤

(𝜇0(X)−m(X)B)
)|||||

X′
,Y ′

]]

= 1− 𝜋
𝑤

𝜋
𝑤

𝔼
[(
𝜇0(X)−m(X)B

)2] (37)

where we’ve used the fact that the summands are IID to pass the variance through the sum and effectively
gain the 1∕n required to cancel the n. The same argument shows that the equivalent for the second term in
Eq. (35) is 1−𝜋

𝑤

𝜋
𝑤

𝔼
[
(𝜇0 −mB)2

]
(notem and B are random here).

Tocomplete theproofwe invokeCorollaryA.7.1 incombinationwithourassumptions |m(x)| < b, |𝜇0(x)| <
b and |m(X)− 𝜇0(X)| L2

←←←←←←←←←←←←←→0 to arrive at the fact that |m(x)B− 𝜇0(x)| L2
←←←←←←←←←←←←←→0 and |mB− 𝜇0| L2

←←←←←←←←←←←←←→0. The condition
that 𝕍X

[
̂f n(X)

]
in Corollary A.7.1 is automatically satisfied becausewe only include the prognostic score in the

regression if ithasnonzerovariance.Thus theexpectations 1−𝜋
𝑤

𝜋
𝑤

𝔼
[(
𝜇0(X)−m(X)B

)2]and 1−𝜋
𝑤

𝜋
𝑤

𝔼
[
(𝜇0 −mB)2

]

converge to 0 as desired. □

Corollary A.8.1. Theorem A.8 also holds for the ANCOVA I estimator.

Proof. In the case of a constant treatment effect ANCOVA I and ANCOVA II have the same asymptotic variance
(Theorem A.5). The result follows immediately. □
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Appendix B. Estimating 𝝈2
𝑤

and 𝝆
𝑤

for power calculations
Onemethod for obtaining estimates for themarginal potential outcomevariances (𝜎2

𝑤

) andpotential outcome-
prognostic score correlations (𝜌

𝑤

) is to use prior data, for example data from the placebo control arm of a
previous trial performed on a similar population (separate from the data used to train the prognostic model).
In this case we presume we have access to a vector Y ′′ =

[
Y′′
1 …Y′′

n′′
]
of outcomes for these subjects and their

corresponding prognostic scoresM′′ =
[
M′′

1 …M′′
n′′
]
, calculated by applying the prognostic modelm to each

subject’s vector of baseline covariates X, i.e.M′′
i = m

(
X′′
i
)
.

The control-arm marginal outcome variance 𝜎2
0 can be estimated with the usual estimator

𝜎

2
0 =

1
n′′ − 1

∑(
Y′′
i − ̄Y′′)2

The correlation 𝜌0 betweenM′′ and Y′′ can be estimated by

𝜌0 =
∑(

Y′′
i − ̄Y′′) (M′′

i − ̄M′′)
√∑(

Y′′
i − ̄Y′′

)2∑(
M′′

i − ̄M′′
)2

which is the usual sample correlation coefficient. These values may be inflated (𝜎2
0) or deflated (𝜌0) in order

to provide more conservative estimates of power.
The corresponding values for the treatment arm can rarely be estimated fromdata because treatment-arm

data for the experimental treatment is likely to be scarce or unavailable. It is therefore prudent to assume
𝜎

2
0 = 𝜎

2
1 and 𝜌0 = 𝜌1, the latter which holds exactly if the effect of treatment is constant across the population.

It may also be prudent (and conservative) to assume a slightly higher value for 𝜎2
1 and a slightly smaller value

for 𝜌1 relative to their control-arm counterparts in the absence of data to the contrary.

Appendix C. Additional simulation results
Here we detail a full set of simulation results using additional specifications for the regression estimators
(Figure 1). “Covariates” indicates whether the raw covariates were adjusted for. “Prognostic score” indicates
whether any prognostic scorewas used, and, if so,whether it was estimated froma training dataset orwhether
the true value was used. “Interactions” specifies whether treatment × (covariates and/or prognostic score)
interactions were used. “SE” indicates the standard deviation of the mean squared error.

Scenario Covariates Prognostic score Interaction MSE SE

Baseline False None True 7.64 × 10−2 1.08 × 10−3
Baseline False None False 7.64 × 10−2 1.08 × 10−3
Baseline False Estimated True 1.76 × 10−2 2.46 × 10−4
Baseline False Estimated False 1.75 × 10−2 2.45 × 10−4
Baseline False Oracle True 7.69 × 10−3 1.09 × 10−4
Baseline False Oracle False 7.69 × 10−3 1.09 × 10−4
Baseline True None True 5.07 × 10−2 7.18 × 10−4
Baseline True None False 5.04 × 10−2 7.14 × 10−4
Baseline True Estimated True 1.74 × 10−2 2.46 × 10−4
Baseline True Estimated False 1.73 × 10−2 2.44 × 10−4
Baseline True Oracle True 7.85 × 10−3 1.11 × 10−4
Baseline True Oracle False 7.85 × 10−3 1.11 × 10−4
Surrrogate False None True 7.47 × 10−2 1.05 × 10−3
Surrrogate False None False 7.47 × 10−2 1.05 × 10−3
Surrrogate False Estimated True 4.05 × 10−2 5.69 × 10−4
Surrrogate False Estimated False 4.03 × 10−2 5.66 × 10−4



24 | A. Schuler et al.: Prognostic covariate adjustment for randomized trials

Scenario Covariates Prognostic score Interaction MSE SE

Surrrogate False Oracle True 8.25 × 10−3 1.18 × 10−4
Surrrogate False Oracle False 8.24 × 10−3 1.18 × 10−4
Surrrogate True None True 5.03 × 10−2 7.09 × 10−4
Surrrogate True None False 5.00 × 10−2 7.04 × 10−4
Surrrogate True Estimated True 3.75 × 10−2 5.27 × 10−4
Surrrogate True Estimated False 3.72 × 10−2 5.23 × 10−4
Surrrogate True Oracle True 8.41 × 10−3 1.20 × 10−4
Surrrogate True Oracle False 8.41 × 10−3 1.20 × 10−4
Shifted False None True 7.65 × 10−2 1.10 × 10−3
Shifted False None False 7.65 × 10−2 1.10 × 10−3
Shifted False Estimated True 6.79 × 10−2 9.62 × 10−4
Shifted False Estimated False 6.79 × 10−2 9.62 × 10−4
Shifted False Oracle True 8.20 × 10−3 1.15 × 10−4
Shifted False Oracle False 8.20 × 10−3 1.15 × 10−4
Shifted True None True 5.03 × 10−2 7.11 × 10−4
Shifted True None False 5.00 × 10−2 7.05 × 10−4
Shifted True Estimated True 4.91 × 10−2 6.97 × 10−4
Shifted True Estimated False 4.86 × 10−2 6.90 × 10−4
Shifted True Oracle True 8.34 × 10−3 1.17 × 10−4
Shifted True Oracle False 8.34 × 10−3 1.17 × 10−4
Strong False None True 7.73 × 10−2 1.08 × 10−3
Strong False None False 7.73 × 10−2 1.08 × 10−3
Strong False Estimated True 1.85 × 10−2 2.65 × 10−4
Strong False Estimated False 1.85 × 10−2 2.64 × 10−4
Strong False Oracle True 8.16 × 10−3 1.16 × 10−4
Strong False Oracle False 8.16 × 10−3 1.16 × 10−4
Strong True None True 5.14 × 10−2 7.18 × 10−4
Strong True None False 5.11 × 10−2 7.13 × 10−4
Strong True Estimated True 1.84 × 10−2 2.62 × 10−4
Strong True Estimated False 1.82 × 10−2 2.59 × 10−4
Strong True Oracle True 8.33 × 10−3 1.18 × 10−4
Strong True Oracle False 8.32 × 10−3 1.18 × 10−4
Linear False None True 3.49 × 10−2 4.83 × 10−4
Linear False None False 3.49 × 10−2 4.83 × 10−4
Linear False Estimated True 9.64 × 10−3 1.38 × 10−4
Linear False Estimated False 9.64 × 10−3 1.38 × 10−4
Linear False Oracle True 8.20 × 10−3 1.16 × 10−4
Linear False Oracle False 8.20 × 10−3 1.16 × 10−4
Linear True None True 8.37 × 10−3 1.18 × 10−4
Linear True None False 8.37 × 10−3 1.18 × 10−4
Linear True Estimated True 8.39 × 10−3 1.19 × 10−4
Linear True Estimated False 8.39 × 10−3 1.19 × 10−4
Linear True Oracle True 8.37 × 10−3 1.18 × 10−4
Linear True Oracle False 8.37 × 10−3 1.18 × 10−4
Heterogeneous False None True 5.54 × 10−2 7.76 × 10−4
Heterogeneous False None False 5.54 × 10−2 7.76 × 10−4
Heterogeneous False Estimated True 2.30 × 10−2 3.23 × 10−4
Heterogeneous False Estimated False 2.32 × 10−2 3.25 × 10−4
Heterogeneous False Oracle True 2.29 × 10−2 3.20 × 10−4
Heterogeneous False Oracle False 2.32 × 10−2 3.24 × 10−4
Heterogeneous True None True 2.99 × 10−2 4.30 × 10−4
Heterogeneous True None False 2.98 × 10−2 4.29 × 10−4
Heterogeneous True Estimated True 2.13 × 10−2 3.01 × 10−4
Heterogeneous True Estimated False 2.19 × 10−2 3.08 × 10−4
Heterogeneous True Oracle True 1.89 × 10−2 2.69 × 10−4
Heterogeneous True Oracle False 1.98 × 10−2 2.81 × 10−4
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Appendix D. Covariates in the empirical demonstration dataset

Table 4: Baseline covariates in the DHA study and ADNI/CPAD historical training data.

Covariate Description

AChEI or memantine usage Whether a subject is using a class of symptomatic Alzheimer’s drugs
ADAS commands Assesses the subject’s ability to follow commands
ADAS comprehension Assesses the subject’s ability to understand spoken language
ADAS construction Assesses the subject’s ability to draw basic figures
ADAS ideational Assesses the subject’s ability to carry out a basic task
ADAS naming Assesses the subject’s ability to name common objects
ADAS orientation Assesses the subject’s knowledge of time and place
ADAS remember instructions Assesses the subject’s ability to remember test instructions
ADAS spoken language Assesses the subject’s ability to speak clearly
ADAS word finding Assesses the subject’s word finding in speech
ADAS word recall Assesses the subject’s ability to recall a list of words
ADAS word recognition Assesses the subject’s ability to remember and identify words
Age Subject age at baseline
ApoE e4 Allele count The number of ApoE e4 alleles a subject has (0, 1, or 2)
CDR community Assesses the subject’s engagement in community activities
CDR home and hobbies Assesses the subject’s engagement in home and personal activities
CDR judgement Assesses the subject’s judgement skills
CDR memory Assesses the subject’s memory
CDR orientation Assesses the subject’s knowledge of time and place
CDR personal care Assesses the subject’s ability to care for themselves
Diastolic blood pressure The diastolic blood pressure of a subject
Education (Years) The number of years of education of a subject
Heart rate The resting heart rate of a subject
Height The height of a subject
Indicator for clinical trial 1 if the subject is in an RCT, 0 if not
MMSE attention and calculation Assesses the subject’s attention and calculation skills
MMSE language Assesses the subject’s language skills
MMSE orientation Assesses the subject’s knowledge of place and time
MMSE recall Assesses the subject’s ability to remember prompts
MMSE registration Assesses the subject’s ability to repeat prompts
Region: Europe 1 if the subject lives in Europe, 0 otherwise
Region: Northern America 1 if the subject lives in the US or Canada, 0 otherwise
Region: Other 1 if the subject lives outside of Europe/US/Canada, 0 otherwise
Serious adverse events The number of serious adverse events reported
Sex 1 if female, 0 if male
Systolic blood pressure The systolic blood pressure of a subject
Weight The weight of a subject
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